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This report presents a numerical study of the two-dimensional, steady and inviscid 
flow of a perfect gas past, wedge profiles with detached shock waves for free-stream 
Mach numbers between 1.05 and 1.44. 

Utilizing the hodograph transformation, a boundary-value problem for the mixed 
flow is formulated in the hodograph plane and subsequently solved by a finite- 
difference scheme, iterating respectively between the elliptic and hyperbolic regions. 
The use of boundary-fitted coordinates and a graded lattice failed to achieve 
satisfactory results, owing to either convergence difficulties or numerical inaccuracies 
introduced through the coordinate generator. On the other hand, Cartesian coordi- 
nates presented no convergence problems and yielded accurate results. 

After transforming the solution back to the physical plane, the flow field between 
the shock wave and the limiting Mach wave is determined. A comparison of the results 
with experiments and other theories shows a good agreement both for the pressure 
distribution on the wedge and for the shock stand-off distance. 

Also of special interest is a quantitative comparison of the results with the 
small-disturbance theory (solution of the Tricomi equation) and the limiting case of 
the free-stream Mach number 1. 

Moreover, an example of the flow past round-nosed wedges, with and without an 
angle of attack, is treated using the inverse method. 

1. Introduction 
In  a supersonic flow past a wedge, depending on a combination of the free-stream 

Mach number and the wedge angle, three essentially different types of flow are 
possible, which have been discussed by Guderley (1947) : 

(i) attached bow wave with purely supersonic flow ; 
(ii) attached bow wave with mixed subsonic-supersonic flow; 

(iii) detached bow wave with mixed subsonic-supersonic flow. 
This paper is concerned with case (iii) of a mixed subsonic-supersonic flow with a 
detached bow wave, as shown qualitatively in figure 1. 

In  the following it is sufficient to restrict the discussion to the upper half of the 
plane. The procedure for the lower half is then obvious. The flow past the wedge (angle 
2a, thickness 2h) with free-stream Mach number M ,  > 1 is from left to right. A 
detached shock wave is formed in front of the wedge, which decelerates the medium 
from a supersonic to a subsonic velocity and deflects the streamlines. As already 
indicated, a local subsonic field exists behind the bow wave in which the medium is 
accelerated to the sonic velocity on the sonic line BD and finally to a supersonic state. 
The sonic line leaves the ridge of the wedge in the point I3 and extends to the point 
D on the shock wave. 

Behind the sonic line a t  the ridge B,  a supersonic fan originates, which tends, in 
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FIGURE 1. Flow field about a wedge with a detached shock wave. 

the immediate vicinity of the ridge, toward a simple Prandtl-Meyer flow. Of special 
importance is the last expansion wave, which intersects the sonic line in the point D 
on the bow wave. This limiting Mach wave confines that part of the supersonic field 
which is able to  influence the subsonic field. Thus a small disturbance downstream 
of the limiting wave BCD has no influence on the subsonic field. Hence the flow field 
downstream of the limiting Mach wave is a purely supersonic.problem, whereas the 
field between the shock wave and the limiting wave is an interdependent subsonic- 
supersonic problem and must therefore be treated as a single bounded transonic zone. 

Computations pertaining to this problem can be performed either in the physical 
or in the hodograph plane. Since this paper deals with the latter method, a short 
review of the existing work directly related to this study will be given. 

In  his original paper, Frankl (1945) formulated the boundary-value problem for 
the flow past a wedge profile with a detached bow wave and proved its uniqueness. 
Later, and independently of Frankl, Guderley (1947) simplified the exact boundary- 
value problem to small disturbances around the sonic velocity. Within the scope of 
this simplification, Guderley & Yoshihara ( 1950) solved analytically the modified 
boundary-value problem for the limiting case of a free-stream Mach number 1. Efforts 
by Vincenti & Wagoner (1952) to obtain a numerical solution of the problem (for the 
small-disturbance theory) failed, because they could not achieve convergence between 
the elliptic and hyperbolic regions. Nevertheless, they succeeded in obtaining a 
numerical solution after eliminating the supersonic domain from explicit consideration. 
In  a later (1954) paper, they extended their work to include flows with a small angle 
of attack. 
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Vincenti, Wagoner & Fisher (1956) solved the exact equations and succeeded for 
the first time in treating the mixed flow past an inclined flat plate at a free-stream 
Mach number 1 by an iterative scheme between the elliptic and hyperbolic regions. 
Using a similar procedure, van Raay (1973) extended the problem a t  the same Mach 
number ( M ,  = 1 )  for the flow past arbitrary wedges without an angle of attack. Later 
and intensive endeavours of the same author (1978 private communication) to solve 
the problem for M ,  2 1 failed owing to convergence difficulties encountered earlier 
and (as a consequence of the small-disturbance theory) circumvented by Vincenti & 
Wagoner (1952). More recently, while the present work was well under way, Graefe 
(1980) avoided an iterative treatment of the mixed flow and succeeded in solving the 
problem for the flow past arbitrary wedges a t  free-stream Mach numbers M, 2 1.2. 

In  spite of this progress, little or no data are available that allow a comparison of 
(i) computations of the exact hodograph equations with experiments, (ii) the results 
of the exact theory with the small-disturbance theory, and (iii) the flow fields for 
M ,  2 1 with the limiting case of M, = 1 .  This paper is therefore a further 
development of the existing work on the hodograph method and provides the 
information just mentioned as lacking. 

2. Basic equations 
Assuming a steady two-dimensional flow and neglecting the effects of viscosity and 

thermal conductivity, the laws of conservation of mass, momentum and energy yield 
the following equation for the stream function Y (Sauer 1960) : 

where u and v are the velocity components in the x- and y-directions, w is the 
magnitude of the velocity, c the speed of sound, p the density, T the temperature 
and s the entropy. The relationships between the stream function Y and the velocity 
components u and v are given by 

1 1 

P P 
u = - Y y ,  v = - - Y  5’ 

Owing to the curvature of the bow wave, an entropy gradient exists across the 
streamlines and the field behind the shock wave is of necessity rotational. This change 
of entropy normal to the streamlines, however, is small for transonic problems, and 
its neglection is justifiable, as can indeed be verified by the computed results for the 
highest free-stream Mach number M ,  = 1.44. Setting 

ds 
d Y - ”  
_ -  (2.3a) 

which, according to Crocco’s theorem, is equivalent to the condition of irrotationality 

(2.1) is greatly simplified to 

( 3 (I-;) Y x x - 2 $ P x y +  1-- Yyy = 0. 
uv 

(2.3b) 

(2.4) 

Equation (2.4) is a second-order quasi-linear partial differential equation of mixed 
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FIGURE 2. Mapping of the physical to the hodograph plane (SL = sonic line, 
LMW = limiting Mach wave). 

type, where the boundary between the elliptic and the hyperbolic region is still 
unknown. Moreover, i t  represents a free boundary problem, because the extremities 
of the transonic zone that is to be investigated, namely the bow wave and the limiting 
Mach wave, are also unknown and must be determined as a part of the solution. These 
difficulties can be avoided, a t  the expense of numerical complications (as will be seen 
later), through the transformation of the problem to the hodograph plane. 

3. Formulation of the problem in the hodograph plane 
3.1. Molenbroelc-Chaplygin transformation 

The transition from the physical plane to the hodograph plane is accomplished 
through the Molenbroek-Chaplygin transformation (Ferrari & Tricomi 1968). The 
critical Mach number M* and the direction 9 of the velocity vector are employed as 
new independent variables instead of the physical coordinates x and y. Equation (2.4) 
then reduces to the Chaplygin equation : 

where K is the ratio of the specific heats of the gas. Equation (3.1) is linear, and the 
boundary (i.e. sonic line) between the elliptic (M* < 1) and hyperbolic regions 
(M* > 1) is given by the relationship M* = 1. 

3.2. Mapping the physical plane to the hodograph plane 

The mapping of the physical plane to the hodograph plane is shown in figure 2, and 
is limited for the present to the case of a zero angle of attack. The non-symmetrical 
case of an angle of attack will be discussed later. 
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The undisturbed oncoming flow characterized by the free-stream Mach number 
M = M ,  and 8 = 0 is mapped to the point co. The bow wave GHD appears as the 
subsonic portion of the shock polar. The stagnation streamlines HABC and HAEF 
run along the line of symmetry a t  9 = 0, intersect the shock wave in the point H a n d  
proceed with a decreasing Mach number in the stagnation point A a t  the nose of the 
wedge. At A the streamline splits in two branches, which run along the upper and 
lower surface of the profile. The mapping of the stagnation streamline on the 
hodograph can then be described as follows. Before the shock wave the stagnation 
streamline is mapped again on the point 00, jumps subsequently to the point of the 
normal shock H of the shock polar and proceeds at an angle 9 = 0 to the stagnation 
point A ( M  = M* = O), where 9 takes all values between +-a and --a. The upper and 
lower surfaces of the wedge are given respectively by the horizontal lines A’B at 9 = a 
and A”E a t  9 = --a. The expansion fans a t  the wedge shoulders B and E appear 
respectively as the right-running wave BC and the left-running wave EF. Likewise 
the images of the limiting Mach lines are given through the left-running and 
right-running characteristics from the intersection of the shock wave GHD with the 
sonic lines BD and EG. 

3.3.  Formulation of the boundary-value problem 

For a unique solution of the problem in the hodograph plane, the Chaplygin equation 
(3 .1)  has to be solved with the following boundary conditions (see e.g. Vincenti & 
Wagoner 1952) : 

Y = 0 on PEA”A’BC, ( 3 . 2 a )  

Y =  Y,,, in D, 

Y =  Ymin in G. 

(3 .2b)  

(3.26) 

(3 .2d)  

In (3 .2b)  (d9/dM*)r is a lengthy expression for the slope of the streamlines on the 
shock polar, which can be determined from the deflection of the streamlines across 
the shock in the physical plane and which is given in detail by Abboud (1982).  If the 
symmetrical case without an angle of attack is considered, the treatment can be 
restricted to the upper half of the plane (9 3 0) with the additional boundary 
condition Y = 0 on AH. Graefe (1980) was the first to solve this boundary-value 
problem for M ,  3 1.2 treating the whole domain as an elliptic one. 

3.4. Treatment of the problem at an angle of attack 

The treatment of the problem a t  an angle of attack is more involved, since the 
stagnation point moves from the nose (figure 3 a )  to the lower wedge surface, causing 
the development of a supersonic field with a shock wave a t  the leading edge (figure 
3 b ) .  Depending on the wedge angle, a region of separation or cavitation may be 
expected. The representation of this complicated flow field in the hodograph is open 
to conjecture and would probably lie on several sheets. Guderley & Yoshihara (1953) 
and later Vincenti & Wagoner (1954) treated the flow past thin wedges a t  a very small 
angle of attack by disregarding the effects of the supersonic region at the leading edge, 
while essentially retaining the hodograph image for the case of the zero angle of 
attack. I n  the present paper the abovementioned complexities are avoided by 
enforcing a subsonic flow through the choice of a wedge with a round nose (figure 36) .  

The mapping of the round nose of the wedge is as follows. The stagnation point 
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FIUURE 3. Flow field in the vicinity of the wedge with and without an angle of attack. 

A appears again as the line A’A” (figure 4), and the locations of the points A’ and 
A“ in the hodograph plane are given through the directions of the flow p and p - IC 
respectively. The surface of the wedge is mapped on the curves A’B, B and A”E, E 
respectively, where the straight surfaces B, B and E, E of the wedge are now (owing 
to the angle of attack e) situated a t  u--E and - (a+€)  respectively. The mapping of 
the rounded nose in the hodograph plane is apriori unknown and has to be determined 
by the inverse method, i.e. an arbitrary curve of the rounded nose is chosen in the 
hodograph plane, the solution is subsequently computed and transformed to the 
physical plane. Usually the solution found is physically meaningless, because the 
computed wedge surface is found to  intersect itself. Consequently some correction 
of the presumed curve in the hodograph plane has to be made and the computation 
scheme repeated until a smooth curve is finally obtained in the physical plane. 
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FIGURE 4. Mapping and formulation of the problem for the case of an angle of attack. 

4. Numerical treatment of the problem 
For an effective and accurate treatment of the problem with the finite-difference 

method a suitable coordinate system is indispensible. Diverse coordinate generators 
were used for the discretization of the elliptic field, whereas a net of characteristic 
curves was always used for the hyperbolic region. I n  figure 5 the solution Y(B*,  9) 
is represented in the hodograph plane for a free-stream Mach number M ,  = 1 . 1  past 
a wedge of half-angle 15' ; the figure shows a rapid variation of Y near the intersection 
of the shock polar and the sonic line. This variation of the solution Y is much steeper 
and more pronounced for M ,  2 1 and gives an idea of the numerical difficulties 
encountered through the hodograph transformation. 

The convenient and flexible technique of Thompson, Thames & Mastin (1977) for 
the numerical generation of boundary-fitted coordinates seemed very promising for 
the present problem. Computations with these coordinates, however, proved to be 
inaccurate, as will be demonstrated in $5. Aside from the mentioned inaccuracies near 
corners, this coordinate generator adversely affected the convergence of the relaxation 
technique for the elliptic region and the iteration scheme between the hyperbolic and 
elliptic regions. Very surprising was the fact that  the method failed for M ,  2 1, a 4 1 
and yielded absurd results. The determination of proper forcing functions also proved 
to be a tedious and very difficult task, which can be avoided by a modified method 
suggested by Middlecoff & Thomas (1979). I n  spite of this advantage, computations 
with these coordinates showed the same shortcomings mentioned previously. 

No convergence could be achieved with a graded lattice in both directions similar 
to the one also unsuccessfully used by Vincenti & Wagoner (1952). The same 
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FIGURE 5. Perspective view of the stream function 'iu in the 
hodograph plane. M ,  = 1.1, a = 15', E = 0". 

difficulties have been reported by van Raay (1978, private communication). Using 
a graded lattice in the M* direction, convergence was achieved only for higher Mach 
numbers. 

In  contrast with the abovementioned systems, a square mesh proved to be 
favourable with regard to convergence and accuracy, and was therefore mainly used. 
Besides the treatment of irregular points (which, however, caused no difficulties) the 
great disadvantage of the Cartesian coordinates that were used lies in the necessity 
€or a great number of grid points to obtain acceptable results. The discretizations 
of the elliptic and hyperbolic regions were done in a similar way to that described 
in Vincenti & Wagoner (1952) and Vincenti et al. (1956). For further details the reader 
is referred'to Abboud (1982). 

The system of finite-difference equations was solved by an iterative process 
between the elliptic and the hyperbolic regions. The peculiarity of the Chaplygin 
equation (3.1) is the change of its type in the domain under consideration. The 
equation is elliptic for M* < 1 and hyperbolic for M* > 1. For a mathematically 
appropriate treatment of both the elliptic and the hyperbolic regions, the value of 
Y o n  the sonic line BD is required (figure 2 ) .  These values of the stream function are, 
however, unknown a priori, and must be computed as part of the solution. This 
problem is solved by the following iterative scheme. 

In the first stage of the computation the hyperbolic region is solved with the method 
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FIGURE 6. Comparison of the flow field with experiments of Griffith (1952) 
and Bryson (1952). M ,  = 1.44, a = 26.6", c: = 0". 

of characteristics by using guessed values of Yon the sonic line BU and the boundary 
condition Y = 0 on BC. Likewise the elliptic field is solved by a relaxation technique 
(SOR) using the pertinent boundary conditions (3.2) and the same guessed values of 
Y on the sonic line. In  the second stage of the computation, the finite-difference 
version of (3.1) is solved for the sonic line, obtaining a new set of values for Y o n  
that line, which are again used as new boundary conditions for both the elliptic and 
hyperbolic regions. The entire process is then repeated until a consistent solution is 
obtained for the whole domain. 

5 .  Discussion of the results 
After solving the boundary-value problem for Y using the iterative process 

described in $4 the solution must be transformed back to the physical plane. This 
is done by numerical integration of the relevant transformation formulas between 
the two planes. Details are omitted here, because a similar treatment can be found 
in Vincenti et al. (1956). 



FIGURE 7. Boundary-fitted coordinates after Thompson et nl. (1977) 
M ,  = 1.44, CY. = 26.6", E = 0". 
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FIGURE 9. Pressure distribution on the wedge surface compared with the theory of Drebinger 
(1950) and experiments of Bryson (1952): M ,  = 1.44, a = 26.6", E = 0". 
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5.1. Flow jield, pressure and shock stand-off distance 

Figure 6(a) shows the shape of the bow wave and sonic line for the flow past a 
relatively thick wedge (7 = 0.5) a t  a free-stream Mach number M ,  = 1.44. The 
number of the grid points used in this computation was approximately 6000 for the 
elliptic and 600 for the hyperbolic region. The comparison with both the computation 
of Drebinger (1950), which was done in the physical plane and allows for an entropy 
gradient across the streamlines, and the experiments of Griffith (1952) in the shock 
tube shows good agreement. The deviation in the sonic line between theory and 
experiment can be explained through the development of the boundary layer on the 
wedge surface. It is interesting to note the difyerences (figure 66) between the 
experimental results of Griffith (1952) and Bryson (1952). It can also be observed that 
the endpoints of the computed shock wave and sonic line do not meet a t  a common 
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FIGURE 12. Influence of the  free-stream Mach number M ,  on the flow field. -, bow wave; 
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point. This discrepancy is due to the high gradients of the stream function in the 
hodograph plane (figure 5 )  and the ultimate numerical inaccuracies made by building 
the necessary derivatives of Y for the transformation to  the physical plane. 

A comparison of the same flow field for Cartesian and numerically generated 
boundary-fitted coordinates (figure 7) after Thompson et al. (1977) is shown in figure 
8. For orientation purposes the experimental shock stand-off distance of Griffith and 
Bryson as well as the sonic line of Griffith are drawn. The greater extension of the 
subsonic field for the numerical coordinates is due to small numerical inaccuracies 
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FIGURE 13. Comparison of the flow field with the small-disturbance 
theory after Vincenti & Wagoner (1982). 

in the neighbourhood of the stagnation point A producing a smaller value for the 
half-thickness h of the wedge, which was used for making all distances dimensionless 
(see e.g. van Raay 1973). The ratio of pressure on the wedge surface to the stagnation 
pressure behind the shock is shown in figure 9. 

Figure 10 shows a comparison of the computed pressure coefficient c p  on the wedge 
surface with experiments of Tanner (1978). The discrepancy between the two results 
for the thinner wedge a t  M ,  = 1.05 and M, = 1.1 is surprising since the agreement 
in all other cases is satisfactory. 

I n  figure 11 the dimensionless shock stand-off distance d / l  is plotted as a function 
of the transonic similarity parameter x. The agreement with the theory of Zierep 
(1968) based on the frozen property of transonic flow and the asymptotic representation 
for the velocity after Muller & Matschat (1964) is very good for x < 0.33. 

The influence of the free-stream Mach number M ,  on the flow field past a wedge 
with the half-angle 01 = 5.71" (7 = 0.1) is represented in figure 12. The extension of 
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the subsonic field in the vertical direction for M ,  = 1.05 is very impressive. The 
endpoint of the bow wave a t  this free-stream Mach number for the flow past a wedge 
with the half-thickness h = 1 cm lies approximately 17 m above the profile! 

5.2 .  Comparison with the small-disturbance theory 

Of special interest is a quantitative comparison of the results with those of the 
small-disturbance theory. The assumption of this theory is that  the velocity in the 
entire flow field differs only slightly from the critical speed of sound c*. This leads 
to a mathematical simplification of the Chaplygin equation (3.1) to the Tricomi 
equation, which has the fundamental advantage of formulating a boundary condition 
for the stream function on the sonic line and allows a separate treatment of the elliptic 
and hyperbolic regions (see Vincenti & Wagoner 1952). The boundary condition (3.2 b )  
for the slope of the streamlines on the shock polar is also simplified within the scope 
of this theory. A comparison of the flow field between the bow wave and the sonic 
line for the two theories is drawn in figure 13. It is apparent that the small-disturbance 
theory yields a smaller shock stand-off distance and a smaller extension of the 
subsonic region. The reason for these results becomes obvious when the shock polar 
with the slope of the streamlines is considered for the two cases (figure 14). The 
small-disturbance shock polar and the slope of the streamlines thereon correspond 
namely to an exact shock polar for a higher free-stream Mach number. 

Besides this qualitative explanation, i t  is also possible to determine exactly the 
inclination of the shock wave a t  its intersection with the sonic line, which gives angles 
of 0 = 69.59" and 0 = 71.46" for M ,  = 1.164 and M ,  = 1.128 respectively. The 
numerical computation yields the angles 0 = 69.66" and 0 = 71.56" whereas the 
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values depicted by the small-disturbancc theory are 0 z 65.8" and 0 z 69.8" 
respectively. 

The abovementioned remarks also find their counterpart in the pressure distribution 
on the wedge surface, which is illustrated in figure 15. 

5.3.  Comparison with theJlow at free-stream Mach number 1 
The limiting case of the flow past wedges a t  free-strcam Mach number 1 has been 
treated both theoretically and experimentally by van Raay (1973). Figure 16 shows 
the distribution of the critical Mach number M* along the stagnation streamline for 
the flow past several wedges at a free-stream Mach number Moo = 1.2. The forwards 
effect of the different profile thickness is clearly seen by comparing the case of flat 
plate (a = 90") and the thinnest wedge (a  = 7 .5") .  Closely rclated to the above is the 
velocity distribution on the wedge surface (figure 17). The very good agreement with 
the results of van Raay (1973), which were also calculated in the liodograph plane 
for the limiting case of M ,  = 1, is very remarkable indeed. 

5.4. The rounded-off wedge with a n d  without anglr o j  attack 
In this section an exarnplc for the flow past rounded-off wedges with and without 
an angle of attack is treated using the inrcrw method. The computations arc dvne 
with a relatively big mesh size, so that thc shapes of the sonic linc and the limiting 
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FIGURE 16. Distribution of the critical Mach number on the stagnation streamline for different 
wedges at Mm = 1.2, 7.5" < a < go", 6 = 0". 
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FIGURE 17. Distribution of the critical Mach number on the profile surface for 
different wedges at M ,  = 1.2, 7.5" < a < go", c: = 0". 

wave show inaccuracies in the vicinity of shock wave. However, the shock stand-off 
distance is accurate, as  was demonstrated k)y test wmputations with different lattice 
intervals for the sharp wedge. 

Figure 18 shows the image in the hodograph plan(. for thc flow past three rounded-off 
wedges having the same half-anglc a: = 26.6' a t  a free-stream ,Mach number 
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M,= 1.44 
a = 26.6' 

1.6 E = 2 a  

0.4 1 I I I I I e 
0 0.2 0.4 0.6 0.8 1.0 x / l  

FIGURE 22. Pressure distribution for the wedge with a rounded nose a t  an angle of attack. 

M ,  = 1.44. The corresponding solution in the physical plane is sketched in figure 19. 
It is evident that  the rounding of the nose enlarges the distance between the shock 
wave and the apex of the wedge, whereas the shock stand-off distance measured from 
the sonic line remains nearly unchanged. 

As already mentioned in $3.4, the development of a local supersonic field a t  the 
leading edge for the case of an angle of attack can be avoided by rounding off the 
apex of the wedge. I n  addition to the previously described problem of finding the 
proper image of the rounded nose in the hodograph plane, a definite ratio of Ym,, 
to Ymin must be iteratively determined, so that the two sides of the wedge will be 
of equal lengths. A choice of Ymin = - Ym,, (symmetrical case) yields different 
lengths for the upper and lower surface. 

The hodograph image for the flow past a wedge with a rounded nose for the 
parameter combination M ,  = 1.44, a = 26.6' and e = 2" is sketched in figure 20. The 
solution on the physical plane is represented in figure 2 1. A comparison with the case 
of zero angle of attack (figure 19, middle contour) shows that the shock stand-off 
distance for this relatively thick profile (7 = 0.5) remains unchanged. At this juncture 
i t  should be pointed out that  the solution in the physical plane is very sensitive 
towards changes of the hodograph image. Small deviations from the right hodograph 
image lead to  nonsensical contours in the physical plane. 

The pressure coefficient for the upper and lower side of the wedge (figure 22)  shows 
clearly the effect of the angle of attack 6 .  

6. Concluding remarks 
The computation of the mixed subsonic-supersonic flow field past wedge profiles 

with detached shock waves using the hodograph method shows good agreement with 
other theories and experiments. 

A comparison of the results of the small-disturbance theory (Tricomi equation) with 
the exact theory (Chaplygin equation) reveals that  the former predicts both a smaller 
subsonic region as well as a higher pressure distribution on the surface of the profiles. 
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A very remarkable result is the very good agreement of the velocity distribution 
on the stagnation streamline, including the surface of the profile, for the free-stream 
Mach numbers M ,  = 1.2 and M ,  = 1 irrespective of the wedge thickness. 

The great advantages of the hodograph method, namely the linearity of the 
differential equation, the known positions of the shock wave and limiting Mach wave, 
are offset by two difficulties. The first one is due to numerical complications caused 
through the very quick variation of the solution in the vicinity of the sonic line and 
shock polar. The second difficulty is the well-known fact that  the problem past 
arbitrary rounded wedges is only susceptible to indirect treatment through the 
inverse method. Both difficulties proved to be formidable. 

The author would like to thank his colleague I)r 0. van Raay for the numerous 
and valuable discussions during the course of this work. 
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